HETEROCYCLES, Vol. 65, No. 5, 2005, pp. 1139-1157
 Received, 31st January, 2005, Accepted, 11th March, 2005, Published online, 11th March, 2005
 PRACTICAL SYNTHESIS OF CHIRAL CIS-CYCLOHEX-4-ENE-1,2DICARBOXYLIC ACID DERIVATIVES BY UTILIZING (4S)-ISOPROPYL-1,3-THIAZOLIDINE-2-THIONE ${ }^{\dagger}$

Tinh Van Dang, ${ }^{\text {a }}$ Motoyuki Miyamoto, ${ }^{\text {a }}$ Shigeki Sano, ${ }^{\text {a }}$ Motoo Shiro, ${ }^{\text {b }}$ and Yoshimitsu Nagao ${ }^{\text {a* }}$

${ }^{\text {a }}$ Graduate School of Pharmaceutical Sciences, The University of Tokushima, Sho-machi, Tokushima 770-8505, Japan
${ }^{\text {b }}$ Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima, Tokyo 196-8666, Japan

Abstract

Both enantiomers of chiral cis-cyclohex-4-ene-1,2-dicarboxylic acid derivatives were synthesized by optical resolution of the corresponding enantiomeric mixtures by utilizing (4S)-isopropyl-1,3-thiazolidine-2-thione followed by mild aminolysis, methanolysis, and hydrolysis.

INTRODUCTION

Chiral differentiation between two identical carbonyl groups of prochiral \quad D symmetric dicarboxylic acids utilizing an enzymatic or a nonenzymatic procedure should be a rational strategy for asymmetric syntheses of biologically active compounds, because the resultant chiral products can be subjected to further "enantioconvergent and enantiodivergent" transformation on the basis of latent \square-symmetry. ${ }^{1}$ Previously, we reported a novel nonenzymatic chiral induction into prochiral \square-symmetric dicarboxylic acids by utilizing a functional heterocycle, ($4 R$ or $4 S$)-methoxycarbonyl-1,3-thiazolidine-2-thione. ${ }^{1-4}$ In the course of our series of studies on the chiral induction utilizing C4-chiral 1,3-thiazolidine-2-thiones, ${ }^{2-6}$ we achieved a highly enantioselective aminolysis of cis-cyclohex-4-ene-1,2-dicarboxylic anhydride (1) by employing the sodium salt of (4S)-isopropyl-1,3-thiazolidine-2-thione [($4 S$)-IPTT] ${ }^{6}$ in THF-DMSO. ${ }^{7}$ This particular meso compound (1) is a useful prochiral precursor for asymmetric synthesis of biologically active compounds such as carbapenems, (+)-carbacyclin, and enzyme inhibitors (vide infra). ${ }^{8,9}$ (4S)IPTT seemed to be available not only for asymmetric aminolysis of prochiral dicarboxylic anhydrides but

[^0]also practically useful for optical resolution of the enantiomeric mixtures of various chiral carboxylic acids, due to the easy crystallization of its carboxylic amides and easy separation of both the yellow diastereomers by monitoring their yellow bands on a silica gel column. Acylamides of N -methoxy- N methylamine (Weinreb amine) have been widely used as versatile synthetic intermediates in organic synthesis since they react with Grignard and other organometallic reagents to give the corresponding ketones. ${ }^{10}$ Here, we report the practical syntheses of chiral cis-cyclohex-4-ene-1,2-dicarboxylic acid derivatives by utilizing asymmetric aminolysis or optical resolution with (4S)-IPTT followed by aminolysis of the (4S)-IPTT amides with the Weinreb amine and other amines. Both enantiomers of chiral cis-cyclohex-4-ene-1,2-dicarboxylic acid derivatives should be useful for development of new enzyme inhibitors (vide infra).

RESULTS AND DISCUSSION

Asymmetric aminolysis of dicarboxylic anhydride (1) with sodium salt of (4S)-IPTT in THF-DMSO at $-50--40{ }^{\circ} \mathrm{C}$ gave a crude monocarboxylic acid (2), which was treated with TMSCHN_{2} in $\mathrm{MeOH}-$ benzene (2:7) to afford methyl ester (3) in 80% yield and 94% ee as shown in Scheme 1. The stereochemistry of $\mathbf{3}$ was determined by its chemical conversion to the antipodal compound (6) of the known lactone via reduction of $\mathbf{3}$ with NaBH_{4} in $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$ (2:1) followed by lactonization of the resulting hydroxymethyl derivative with a catalytic amount of TsOH in toluene at $110{ }^{\circ} \mathrm{C}$ for 1 h as shown in Scheme 2. ${ }^{9}$ The crude ($4 S$)-IPTT amide (2) was allowed to react with N-methoxy- N methylamine hydrochloride in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ to afford the optically active amide (4). However, the chiral Weinreb monoamide (4) could not be furnished; instead, racemic amide (4) was obtained in 56% yield from 1. This outcome can be explained as follows. In the presence of a small excess of $\mathrm{Et}_{3} \mathrm{~N}$ and N -methoxy- N-methylamine, the resulting carboxylate would attack to the carbonyl group of the (4S)-IPTT amide moiety bearing an "active amide structure" to generate anhydride (1), which has been shown to react with the Weinreb amine to afford racemic amide (4). When dicarboxylic anhydride (1) was subjected to aminolysis with the Weinreb amine followed by methylation with TMSCHN_{2}, a racemic methyl ester ($\mathbf{5 a}$ and $\mathbf{5 b}$) was obtained in 63% yield from 1. Thus, the chiral Weinreb monoamide (5a) (> 93% ee) could be obtained in 90% yield by reaction of $\mathbf{3}(94 \% \mathrm{de}, 80 \%$ yield from $\mathbf{1})$ with N -methoxy- N methylamine. In this reaction ($\mathbf{3} \square \mathbf{5 a}$), no cyclization and no epimerization occurred as shown in Scheme 1.

Optical resolution of racemic amide (4) obtained from 1 in 71% yield was carried out by utilizing $(4 S)$ IPTT. Dehydrative condensation of 4 with (4S)-IPTT in the presence of 1-ethyl-3-(3-

Scheme 1

Scheme 2
dimethylaminopropyl)carbodimide hydrochloride ($\mathrm{WSCD} \cdot \mathrm{HCl}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave a mixture of two diasteromers (7a and 7b); these compounds could not be separated on a silica gel column. When the mixture of diasteromers (7a and 7b) was treated with hexane, one of them completely dissolved in hexane at room temperature. After removing the solvent by filtration, chiral monoamide (7a) remained as a yellow solid (37% yield, $>99 \%$ de) and then another chiral monoamide ($\mathbf{7 b}$) was obtained as a yellow oil (43% yield, 94% de) from the filtrate. Diasteromers ($\mathbf{7 a}$ and 7b) were converted to the corresponding enantiomers [$\mathbf{5 a}$ (82% yield, $>99 \%$ ee) and $\mathbf{5 b}$ (81% yield, 94% ee)] by methanolysis with $\mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{MeOH}$, respectively.

The stereochemistries of compounds ($\mathbf{7 a} \mathbf{a} \mathbf{b}$ and $\mathbf{5 a}, \mathbf{b}$) were precisely established by X-Ray crystallographic analysis of 7a (Figure 1) and chemical conversion of 7a to the known chiral monoamide (5a), as shown in Scheme 3. Based on the above results. (4S)-IPTT is not only available for asymmetric

Scheme 3

7a
Figure 1. Computer-generated drawing from the X-Ray coordinates of compound (7a)
aminolysis of prochiral dicarboxylic acid anhydride (1) with an excellent diastereoselectivity but also practically useful for optical resolution.

Subsequently, we attempted an optical resolution of racemic cis-6-benzoylcyclohex-3-enecarboxylic acid (8) $\left(72 \%\right.$ yield) that was obtained by treatment of $\mathbf{4}$ with PhMgBr in THF at $0^{\circ} \mathrm{C}$. Namely, dehydrative condensation of $\mathbf{8}$ with (4S)-IPTT in the presence of WSCD• HCl and 4-dimethylaminopyridine (DMAP) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave a diasteromeric mixture of $\mathbf{9 a}$ and $\mathbf{9 b}$. These mixtures were completely separated on a silica gel column [hexane-AcOEt (5:1)] to give pure (4S)-IPTT amide (9a) or (9b) as a yellow solid in 40% or 24% yield with each excellent diasteromer excess (> 99\% de).

Scheme 4

Scheme 5

The stereochemistries of $\mathbf{9 a}$ and $\mathbf{9 b}$ were established by their X-Ray crystallographic analyses (Figure 2) and by hydrolysis of $\mathbf{9 a}$ with LiOH in $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}(9: 1)$ at $0^{\circ} \mathrm{C}$ to afford a known carboxylic acid, (1 S , $6 R$)-6-benzoylcyclohex-3-enecarboxylic acid (10a) ${ }^{11}\left[\mathrm{mp} 122-123.5{ }^{\circ} \mathrm{C}\right.$ (hexane- CHCl_{3}), $[\mathrm{C}]_{\mathrm{D}}{ }^{24}-41.4^{\circ}$ (c $0.5, \mathrm{CHCl}_{3}$); lit., $\left.{ }^{11} 91 \% \mathrm{ee}, \mathrm{mp} 106-108{ }^{\circ} \mathrm{C}\left(\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right),[\square]_{\mathrm{D}}{ }^{23}-31.9^{\circ}\left(\mathrm{c} 0.48, \mathrm{CHCl}_{3}\right)\right]$ in 70% yield and $>99 \%$ ee as shown in Scheme 4 . The similar hydrolysis of $\mathbf{9 b}$ with LiOH furnished another chiral carboxylic acid (10b) in 70% yield and $>99 \%$ ee. Methylation of enantiomers (10a and 10b) with TMSCHN_{2} gave the corresponding cis-methyl esters (11a) ($>99 \%$ ee) and (11b) ($>99 \%$ ee) in 90% and 91% yields, respectively. Interestingly, methanolysis of (4S)-IPTT amides (9a) and (9b) with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH at room temperature furnished the corresponding trans-methyl esters [12a (82% yield, $>99 \%$ ee) and $\mathbf{1 2 b}$ (83% yield, $>99 \%$ ee)], respectively, as shown in Scheme 5. The trans geometry of 12a,b was confirmed by comparing their spectroscopic data with those of the cis-methyl esters (11a,b) having the

9a

9b

Figure 2. Computer-generated drawing from the X-Ray coordinates of compounds (9a and 9b)

same elemental analysis data. In this reaction ($\mathbf{9 a}, \mathbf{b} \square \mathbf{1 2 a}, \mathbf{b}$), epimerization occurred at the enolizable chiral carbon atom bearing the benzoyl group. ${ }^{12}$
The (4S)-IPTT group of the amides bearing an "active amide structure" can be readily removed by the reactions with a variety of nucleophiles, which allows the products to be transformed into a wide range of derivatives. ${ }^{6,13}$ Thus, the ($4 S$)-IPTT amides ($\mathbf{7 a , b}$ and $\mathbf{9 a}, \mathbf{b}$) were subjected to mild aminolyses with the Weinreb amine and some amines to obtain the corresponding enantiomerically pure Weinreb amides $(\mathbf{1 3 a}, \mathbf{b})$, piperidine amides ($\mathbf{1 4 a} \mathbf{a}, \mathbf{b}$ and $\mathbf{1 6 a , b}$), and morpholine amides ($\mathbf{1 5 a}, \mathbf{b}$ and $\mathbf{1 7 a , b}$) in excellent yields, respectively, as shown in Schemes 5, 6 and 7. In all cases, the end point of the aminolysis could be monitored by disappearance of the original yellow color of the ($4 S$)-IPTT amides. The ($4 S$)-IPTT was recovered by flash column chromatography of each reaction mixture in a good yield.

In conclusion, we have developed practically useful procedures for the syntheses of several enantiomerically pure amides of cis-cyclohex-4-ene-1,2-dicarboxylic acid utilizing diastereoselective aminolysis of a prochiral dicarboxylic anhydride and optical resolution of some enantiomeric mixtures of monocarboxylic acids by the efficient use of (4S)-IPTT. The resulting chiral amides can be useful for the development of new enzyme inhibitors. ${ }^{14}$ The chiral compounds ($\mathbf{9 a}, \mathbf{b}$ and $\mathbf{1 0 a}, \mathbf{b}$) should specifically be useful for syntheses of specific enzyme inhibitors and biologically active compounds such as chiral cis-tetra- and cis-hexahydrophthalazinone (18), ${ }^{14}$ chiral 3-phenylhexahydro-1(3H)-isobenzofuranone (19), ${ }^{15}$ chiral 5-methyl-1-phenyl-1 H-2,5-benzoxacine (20), ${ }^{16}$ and other biologically active natural products and drugs.

18

19

20
Scheme 8

EXPERIMENTAL

All melting points were determined on a Yanaco micro melting point apparatus and are uncorrected. IR spectra were obtained using a JASCO FT/IR-420 IR Fourier transform spectrophotometer. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectra were recorded on a JEOL JNM-AL400 spectrometer. Chemical shifts are given in \square value (ppm) using tetramethylsilane (TMS) as an internal standard. EI-MS spectrum was recorded on a JEOL JMS SX-102A spectrometer. Elementary combustion analyses were performed using a YANACO CHN CORDER MT-5. All reactions were monitored by TLC employing 0.25 mm
silica gel plates (Merck 5715; $60 \mathrm{~F}_{254}$). Preparative TLC (PTLC) was performed on 0.5 mm silica gel plates (Merck 5744; $60 \mathrm{~F}_{254}$). Column chromatography was carried out on silica gel [Kanto chemical 60 N (spherical, neutral); 63-210 $\square \mathrm{m}]$. Analytical high performance liquid chromatography (HPLC) was performed on a JASCO model 807-IT HPLC equipped with a JASCO UV-970 intelligent UV/VIS detector. Optical rotations were measured on a DIP-370 digital polarimeter in a 1 dm cell. Anhydrous THF and anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were used as purchased from Kanto chemical. All other reagents were used as purchased. All reactions were carried out under argon.

Methyl (1R, 6S)-6-[(4S)-4-Isopropyl-1,3-thiazolidine-2-thion-3-yl]carbonylcyclohex-3enecarboxylate (3)

A suspension of $60 \% \mathrm{NaH}$ (coated type with mineral oil, $220 \mathrm{mg}, 5.5 \mathrm{mmol}$) in THF (6 mL) was added to a solution of (4S)-IPTT ($805 \mathrm{mg}, 5 \mathrm{mmol}$) in THF $(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ with stirring. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min and then anhydrous DMSO $(0.43 \mathrm{~mL}, 6 \mathrm{mmol})$ was added at rt . After being stirred at rt for 1 h , the reaction mixture was added to a solution of $\mathbf{1}(836.8 \mathrm{mg}, 5.5 \mathrm{mmol})$ in THF $(6 \mathrm{~mL})$ at $-50^{\circ} \mathrm{C}$. The mixture was stirred at $-50--40^{\circ} \mathrm{C}$ for 1 h . The reaction was quenched with an aqueous solution (20 mL) saturated with NaHSO_{4} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with brine, dried over MgSO_{4}, and filtered. The filtrate was evaporated in vacuo to give a crude carboxylic acid (2), which was treated with TMSCHN_{2} in ether affording methyl ester (3) ($1.30 \mathrm{~g}, 80 \%$) as a yellow oil after purification by column chromatography on silica gel with hexane-AcOEt (4:1). [[]$_{\mathrm{D}}{ }^{18}+544.8^{\circ}$ (c $0.90, \mathrm{CHCl}_{3}$). IR (neat) $3029,1731,1691 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 0.95-0.97(\mathrm{~d}, 3 \mathrm{H}, J=7.08 \mathrm{~Hz}), 1.05-1.07(\mathrm{~d}$, $3 \mathrm{H}, J=6.84 \mathrm{~Hz}), 2.05-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.82-2.88(\mathrm{~m}, 1 \mathrm{H}), 3.02-3.05$ $(\mathrm{d}, 1 \mathrm{H}, J=11.47 \mathrm{~Hz}), 3.06-3.12(\mathrm{~m}, 1 \mathrm{H}), 3.64-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 4.39-4.46(\mathrm{ddd}, 1 \mathrm{H}, J=16.12$, $10.99,5.13 \mathrm{~Hz}), 5.02-5.05(\mathrm{t}, 1 \mathrm{H}, J=7.57 \mathrm{~Hz}), 5.68-5.72(\mathrm{~m}, 2 \mathrm{H})$; HREI-MS calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}_{2} \mathrm{MW}$ 327.0963, found $m / z 327.0955\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}_{2}$: C, 55.02; H, 6.46; N, 4.28. Found: C, 55.27; H, 6.57; N, 4.49. HPLC analysis [TSK-gel Silica 60, hexane-AcOEt (9:1), $1.0 \mathrm{~mL} / \mathrm{min}, 305 \mathrm{~nm}$; $t_{\mathrm{R}}($ minor $)=13.22 \mathrm{~min}, t_{\mathrm{R}}($ major $\left.)=15.47 \mathrm{~min}\right]$ gave the isomeric composition of the product: $94 \% \mathrm{de}$.

Racemic cis-6-(N-Methoxy- N-methylaminocarbonyl)cyclohex-3-enecarboxylic Acid (4)

Method 1: A crude carboxylic acid (2), obtained by the synthetic method described for 3, was treated with N-methoxy- N-methylamine hydrochloride ($731 \mathrm{mg}, 7.5 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(2.08 \mathrm{~mL}, 15 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(30 \mathrm{~mL})$ at rt for 30 min . The reaction mixture was acidified with $10 \% \mathrm{HCl}$, and extracted with CHCl_{3} ($3 \square 100 \mathrm{~mL}$). The usual work-up of the CHCl_{3} extract followed by purification on a silica gel column with hexane-EtOAc (1:3) afforded racemic amide (4) $(0.59 \mathrm{~g}, 56 \%)$ as a white solid.

Method 2: To a solution of $\mathbf{1}(3.35 \mathrm{~g}, 20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ were added N-methoxy- N methylamine hydrochloride ($2.34 \mathrm{~g}, 24 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(5.5 \mathrm{~mL}, 40 \mathrm{mmol})$ at rt . The mixture was stirred at rt for 12 h . The reaction mixture was acidified with $10 \% \mathrm{HCl}$ and then extracted with $\mathrm{CHCl}_{3}(3 \square 100$ $\mathrm{mL})$. The organic layer was washed with brine, dried over MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel with hexane-EtOAc (1:3) to give racemic amide (4) ($3.02 \mathrm{~g}, 71 \%$) as a white solid. $\mathrm{mp} 96-97^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right.$-hexane); IR (KBr) 1702,1651 cm^{-1}; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad$ 2.28-2.29 (m, 1H), 2.36-2.38 (m, 2H), 2.82-2.89 (m, 1H), 2.99-3.01 $(\mathrm{m}, 1 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 3.39-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 5.69-5.71(\mathrm{~m}, 1 \mathrm{H}), 5.77-5.79(\mathrm{~m}, 1 \mathrm{H})$; HREI-MS calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}_{4}$ MW 213.1001, found $m / z 213.1000\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}_{4}$: C, 56.33; H , 7.09; N, 6.57. Found: C, 56.21; H, 7.04; N, 6.47.

Methyl (1R, 6S)-6-(N-Methoxy- N-methylaminocarbonyl)cyclohex-3-enecarboxylate (5a)

Method 1: To a solution of $\mathbf{3}(327 \mathrm{mg}, 1 \mathrm{mmol})$ and N-methoxy- N-methylamine hydrochloride ($195 \mathrm{mg}, 2$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ were added 4-dimethylaminopyridine ($61 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(0.45 \mathrm{~mL}, 3$ mmol) at rt . After being stirred at rt for 24 h , the reaction mixture was acidified with $10 \% \mathrm{HCl}$ and then extracted with $\mathrm{CHCl}_{3}(3 \square 20 \mathrm{~mL})$. The extract was washed with brine, dried over MgSO_{4}, and filtered. The filtrate was evaporated in vacuo to give an oily residue, which was purified by column chromatography on silica gel with hexane-EtOAc (1:1) to afford chiral amide (5a) ($204 \mathrm{mg}, 90 \% ;>93 \%$ ee) as a colorless oil. $[\square]_{D}{ }^{24}-14^{\circ}\left(\mathrm{c} 0.63, \mathrm{CHCl}_{3}\right)$. IR (neat) $1738,1666 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 2.36-$ $2.48(\mathrm{~m}, 3 \mathrm{H}), 2.68-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.89-2.93(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 3.34-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}$, $3 \mathrm{H})$, 5.70-5.75 (m, 2H); HREI-MS calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{4}$ MW 227.1158, found $m / z 227.1161\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{4}$: C, 58.14; H, 7.54; N, 6.16. Found C, 57.97; H, 7.54; N, 6.14.

Method 2: A mixture of 7a (vide infra) ($356 \mathrm{mg}, 1 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($691 \mathrm{mg}, 5 \mathrm{mmol}$) in methanol (9 mL) was stirred at rt for 2 h . The reaction was quenched with $10 \% \mathrm{HCl}$ and then the mixture was extracted with $\mathrm{CHCl}_{3}(3 \square 20 \mathrm{~mL})$. The extract was washed with brine, dried over MgSO_{4}, and filtered. The filtrate was evaporated in vacuo to give an oily residue, which was purified by column chromatography on silica gel with hexane-EtOAc (2:1) to afford chiral amide (5a) ($186 \mathrm{mg}, 82 \% ;>99 \%$ ee) as a colorless oil. $[\square]_{D}^{23}-16^{\circ}\left(c \operatorname{c} 0.78, \mathrm{CHCl}_{3}\right)$. HPLC analysis [Chiralcel OD-H, hexane-i-PrOH (5:1), 0.3 $\mathrm{mL} / \mathrm{min}, 225 \mathrm{~nm} ; t_{\mathrm{R}}($ minor $)=20.9 \mathrm{~min}, t_{\mathrm{R}}($ major $\left.)=29.5 \mathrm{~min}\right]$ gave the isomeric composition of the product: $>93 \%$ ee (Method 1) and $>99 \%$ ee (Method 2).

To a solution of racemic compound (4) (213 mg, 10 mmol) in MeOH -benzene ($2: 7$) (4.5 mL) was added $\mathrm{TMSCHN}_{2}(2.0 \mathrm{M}$ in diethyl ether: $1 \mathrm{~mL}, 2 \mathrm{mmol})$ at rt . After being stirred at rt for 30 min , the reaction mixture was treated with $10 \% \mathrm{HCl}$ and then extracted with $\mathrm{CHCl}_{3}(3 \square 20 \mathrm{~mL})$. The extract was washed with brine, dried over MgSO_{4}, and filtered. The filtrate was evaporated in vacuo to give an oily residue, which was purified by column chromatography on silica gel with hexane-EtOAc (2:1) to afford racemic methyl ester (5a) ($202 \mathrm{mg}, 89 \%$) as a colorless oil.

Methyl (1S, 6R)-6-(N-Methoxy- N-methylaminocarbonyl)cyclohex-3-enecarboxylate (5b)

The similar metahnolysis of $\mathbf{7 b}$ ($356 \mathrm{mg}, 1 \mathrm{mmol}$) to the case (Method 2) of $\mathbf{5 a}$ afforded chiral methyl ester (5b) as a colorless oil ($184 \mathrm{mg}, 81 \%$ yield) in 94% ee. $[\square]_{D}{ }^{23}+15.6^{\circ}$ (c $0.71, \mathrm{CHCl}_{3}$). IR (neat) 1732, $1659 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 2.36-2.48 (m, 3H), 2.68-2.78 (m, 1H), 2.89-2.93(m, 1H), 3.18 $(\mathrm{s}, 3 \mathrm{H}), 3.34-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 5.70-5.75(\mathrm{~m}, 2 \mathrm{H})$; HREI-MS calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{4}$ MW 227.1158, found $m / z 227.1163\left(\mathrm{M}^{+}\right)$. HPLC analysis [Chiralcel OD-H, hexane $-i-\mathrm{PrOH}(5: 1), 0.3$ $\mathrm{mL} / \mathrm{min}, 225 \mathrm{~nm} ; t_{\mathrm{R}}($ major $)=20.85 \mathrm{~min}, t_{\mathrm{R}}($ minor $\left.)=29.48 \mathrm{~min}\right]$ gave the isomeric composition of the product: 94% ee.

($1 R, 5 S$)-2-Oxo-3-oxabicyclo[4.3.0]non-7-ene (6)

To a solution of $\mathbf{3}(600 \mathrm{mg}, 1.83 \mathrm{mmol})$ in $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}(2: 1)(14.6 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(77.1 \mathrm{mg}, 1.83$ mmol) under ice cooling. After being stirred at rt for 1 h , the reaction mixture was treated with an aqueous solution saturated with NaHSO_{4} and then EtOH was evaporated in vacuo. The aqueous residue was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the extract was concentrated in vacuo to give an oily residue, which was treated with toluene (6.1 mL) and a catalytic amount of $p-\mathrm{TsOH}$ under heating at $110{ }^{\circ} \mathrm{C}$ for 1 h . After toluene was evaporated in vacuo, the residue was purified by column chromatography on silica gel with hexane $-\mathrm{CHCl}_{3}-$ acetone (20:19:1) to afford chiral lactone (6) $(90 \mathrm{mg}, 75 \%)$ as a colorless oil. $[\square]_{D}{ }^{20}$ $+79.8^{\circ}$ (c 1.1, acetone) $\left[\right.$ lit.,$^{9}[\square]_{\mathrm{D}}{ }^{20}-85.4^{\circ}$ (c 2.63, acetone)]. IR $\left(\mathrm{CHCl}_{3}\right) 1770 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(90 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \square 1.68-2.88(\mathrm{~m}, 6 \mathrm{H}), 4.02(\mathrm{dd}, 1 \mathrm{H}, J=8.79,1.76 \mathrm{~Hz}), 4.33(\mathrm{dd}, 1 \mathrm{H}, J=8.79,4.62 \mathrm{~Hz}), 5.56-5.88$ (m, 2H); HREI-MS calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2}$ MW 138.0680, found $\mathrm{m} / \mathrm{z} 138.0646\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2} \cdot 1 / 9 \mathrm{H}_{2} \mathrm{O} \quad \mathrm{C}, 68.55 ; \mathrm{H}, 7.35$. Found: C, $68.51 ; \mathrm{H}, 7.39$.

Optical Resolution of Racemic cis-6-(N-Methoxy- N-methylaminocarbonyl)cyclohex-3-enecarboxylic Acid (4)
To a solution of racemic carboxylic acid (4) ($213 \mathrm{mg}, 1 \mathrm{mmol}$) and ($4 S$)-IPTT ($218 \mathrm{mg}, 1.3 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ were added DMAP ($61 \mathrm{mg}, 0.5 \mathrm{mmol}$) and WSCD $\cdot \mathrm{HCl}(400 \mathrm{mg}, 2 \mathrm{mmol})$ at rt . The
mixture was stirred at rt for 8 h . The reaction mixture was acidified with $10 \% \mathrm{HCl}$ and then extracted with $\mathrm{CHCl}_{3}(3 \square 20 \mathrm{~mL})$. The extract was subjected to the usual work-up to give an oily residue, which was chromatographed on a silica gel column with hexane-EtOAc (2:1) to afford a diasteromer mixture of $\mathbf{7 a}, \mathbf{b}$ as a yellow oil ($285 \mathrm{mg}, 80 \%$). The diastereomeric mixture of $\mathbf{7 a}, \mathbf{b}$ was treated with hexane and then a yellow precipitation was filtered off. Crystallization of the precipitation in CHCl_{3}-hexane gave (4S)IPTT amide (7a) ($132 \mathrm{mg}, 37 \%$) as yellow prisms. The resulting filtrate was evaporated in vacuo to give another ($4 S$)-IPTT amide ($7 \mathbf{7 b}$) ($153 \mathrm{mg}, 43 \%$) as a yellow oil.
(1S, 6R)-6-[(4S)-4-Isopropyl-1,3-thiazolidine-2-thion-3-yl]carbonyl- N-methoxy- N-methylcyclohex-3enecarboxamide (7a)

Yellow prisms, mp 135-136.5 ${ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right.$-hexane); $[\mathrm{C}]_{\mathrm{D}}{ }^{24}+314.7^{\circ}$ (c 1.05, CHCl_{3}). IR (neat) 3381, 1701, $1657 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 0.98-1.00(\mathrm{~d}, 3 \mathrm{H}, J=7.18 \mathrm{~Hz}$), $1.06-1.07(\mathrm{~d}, 3 \mathrm{H}, J=7.08 \mathrm{~Hz})$, 2.25-2.32 (m, 1H), 2.35-2.41 (m, 1H), 2.48-2.55 (m, 1H), 2.62-2.68 (m, 1H), 2.99-3.03 (d, 1H, J=12.21 $\mathrm{Hz}), 3.15(\mathrm{~s}, 3 \mathrm{H}), 3.44-3.50(\mathrm{dd}, 1 \mathrm{H}, J=11.47,8.54 \mathrm{~Hz}), 3.64-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 4.70-4.75(\mathrm{~m}$, 1 H), 5.06-5.09 (dd, $1 \mathrm{H}, J=8.30,4.64 \mathrm{~Hz}$), 5.70-5.73 (m, 2H); HREI-MS calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$ MW 356.1228, found $m / z 356.1238\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}: \mathrm{C}, 53.90 ; \mathrm{H}, 6.79 ; \mathrm{N}, 7.86$. Found: C, 53.76; H, 6.76; N, 7.82. HPLC analysis [TSK-gel Silica 60, hexane-AcOEt (4:1), $1.5 \mathrm{~mL} / \mathrm{min}, 305 \mathrm{~nm}$; $t_{\mathrm{R}}($ minor $)=27.07 \mathrm{~min}, t_{\mathrm{R}}$ (major) $\left.=32.77 \mathrm{~min}\right]$ gave the isomeric composition of the product: $>99 \% \mathrm{de}$.
(1R, 6S)-6-[(4S)-4-Isopropyl-1,3-thiazolidine-2-thion-3-yl]carbonyl- N-methoxy- N-methylcyclohex-3enecarboxamide (7b)

Yellow oil; $[\square]_{\mathrm{D}}{ }^{24}+269.2^{\circ}\left(\mathrm{c} 1.05, \mathrm{CHCl}_{3}\right.$). IR (neat) $3181,1776,1650 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\square 0.96-0.98(\mathrm{~d}, 3 \mathrm{H}, J=7.08 \mathrm{~Hz}), 1.04-1.06(\mathrm{~d}, 3 \mathrm{H}, J=6.84 \mathrm{~Hz}), 2.25-2.55(\mathrm{~m}, 4 \mathrm{H}), 2.98-3.00(\mathrm{~d}, 1 \mathrm{H}, J=$ $12.20 \mathrm{~Hz})$, $3.18(\mathrm{~s}, 3 \mathrm{H}), 3.19-3.26(\mathrm{~m}, 1 \mathrm{H}), 3.64-3.69(\mathrm{dd}, 1 \mathrm{H}, J=10.99,7.81 \mathrm{~Hz}), 4.86-4.89(\mathrm{~m}, 1 \mathrm{H})$, 5.0-5.01 (dd, $1 \mathrm{H}, J=7.81,6.59 \mathrm{~Hz}), 5.70-5.75(\mathrm{~m}, 1 \mathrm{H}), 5.78-5.84(\mathrm{~m}, 1 \mathrm{H})$; HREI-MS calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$ MW 356.1228, found $m / z 356.1204\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$: C, 53.90; H, 6.79; N, 7.86. Found: C, 53.72; H, 6.70; N, 7.85. HPLC analysis [TSK-gel Silica 60, hexane-AcOEt (4:1), 1.5 $\mathrm{mL} / \mathrm{min}, 305 \mathrm{~nm} ; t_{\mathrm{R}}($ major $)=27.06 \mathrm{~min}, t_{\mathrm{R}}($ minor $\left.)=33.06 \mathrm{~min}\right]$ gave the isomeric composition of the product: 94% de.

Racemic cis-6-Benzoylcyclohex-3-enecarboxylic Acid (8)

To a solution of racemic carboxylic acid (4) ($213 \mathrm{mg}, 1 \mathrm{mmol}$) in anhydrous THF (6 mL) was added $\operatorname{PhMgBr}(1.0 \mathrm{M}$ in THF : $3 \mathrm{~mL}, 3 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After being stirred at $0^{\circ} \mathrm{C}$ for 12 h , the reaction mixture
was treated with $10 \% \mathrm{HCl}$, and extracted with $\mathrm{CHCl}_{3}(3 \square 20 \mathrm{~mL})$. The extract was washed with brine, dried over MgSO_{4}, and filtered. Evaporation of the filtrate in vacuo gave a solid residue, which was purified by column chromatography on silica gel with hexane-EtOAc (1:1) to afford benzoyl derivative (8) $(165 \mathrm{mg}, 72 \%)$ as a white solid. $\mathrm{mp} 131-132{ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right.$-hexane), (lit., $\left.{ }^{17} \mathrm{mp} 130-131{ }^{\circ} \mathrm{C}\right)$; IR (KBr) $\left.1690,1669 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\right] \quad 2.49-2.50(\mathrm{~m}, 3 \mathrm{H}), 2.78-2.83(\mathrm{~m}, 1 \mathrm{H}), 3.02-3.03(\mathrm{~m}$, $1 \mathrm{H}), 3.96-3.97(\mathrm{~m}, 1 \mathrm{H}), 5.60-5.65(\mathrm{~m}, 1 \mathrm{H}), 5.75-5.92(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.56(\mathrm{~m}, 1 \mathrm{H})$, 7.85-7.88 (m, 2H); HREI-MS calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{3}$ MW 230.0943, found $m / z 230.0946\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}_{4}$: C, 73.03; H, 6.13. Found: C, 72.96; H, 6.20.

Optical Resolution of Racemic cis-6-Benzoylcyclohex-3-enecarboxylic Acid (8)

To a solution of $\mathbf{8}(230 \mathrm{mg}, 1 \mathrm{mmol})$ and ($4 S$)-IPTT ($335 \mathrm{mg}, 2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ were added DMAP ($61 \mathrm{mg}, 0.5 \mathrm{mmol}$) and WSCD $\cdot \mathrm{HCl}(400 \mathrm{mg}, 2 \mathrm{mmol})$ at rt . After being stirred at rt for 1 h , the reaction mixture was allowed to treat with the usual work-up to give a yellow solid residue, which was subjected to column chromatography on silica gel with hexane-EtOAc (5:1) to furnish (4S)-IPTT amide (9a) (149 mg, 40\%) as a yellow solid and then another ($4 S$)-IPTT amide ($\mathbf{9 b}$) $(90 \mathrm{mg}, 24 \%)$ as a yellow solid.

(1S, 6R)-6-Benzoyl-1-[(4S)-4-isopropyl-1,3-thiazolidine-2-thion-3-yl]carbonylcyclohex-3-ene (9a)

Yellow prisms, $\mathrm{mp} 84-86^{\circ} \mathrm{C}$ (hexane); $[\square]_{\mathrm{D}}{ }^{24}+354.8^{\circ}\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right.$). IR (neat) $3323,1698,1671 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 0.96-0.98(\mathrm{~d}, 3 \mathrm{H}, J=7.08 \mathrm{~Hz}), 1.06-1.07(\mathrm{~d}, 3 \mathrm{H}, J=6.84 \mathrm{~Hz}), 2.40-2.65(\mathrm{~m}$, $5 \mathrm{H}), 3.03-3.06(\mathrm{~d}, 1 \mathrm{H}, J=12.45 \mathrm{~Hz}), 3.68-3.73(\mathrm{dd}, 1 \mathrm{H}, J=11.48,8.06 \mathrm{~Hz}), 3.84-3.89(\mathrm{~m}, 1 \mathrm{H}), 4.80-$ $4.82(\mathrm{~m}, 1 \mathrm{H}), 5.00-5.05(\mathrm{~m}, 1 \mathrm{H}), 5.75-5.88(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.85-7.90(\mathrm{~m}$, 2 H); HREI-MS calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}_{2}$ MW 373.1170, found $\mathrm{m} / \mathrm{z} 373.1150\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}_{2}: \mathrm{C}, 64.31 ; \mathrm{H}, 6.21 ; \mathrm{N}, 3.75$. Found: C, $63.96 ; \mathrm{H}, 6.23 ; \mathrm{N}, 3.73$. HPLC analysis [TSK-gel Silica 60, hexane-AcOEt (15:1), $0.5 \mathrm{~mL} / \mathrm{min}, 305 \mathrm{~nm} ; t_{\mathrm{R}}($ major $)=34.6 \mathrm{~min}, t_{\mathrm{R}}($ minor $\left.)=49.2 \mathrm{~min}\right]$ gave the isomeric composition of the product: $>99 \%$ de.
(1R, 6S)-6-Benzoyl-1-[(4S)-4-isopropyl-1,3-thiazolidine-2-thion-3-yl]carbonylcyclohex-3-ene (9b)
Pale yellow prisms, $\mathrm{mp} 98-100^{\circ} \mathrm{C}$ (hexane); $[\square]_{\mathrm{D}}{ }^{24}+291^{\circ}\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right.$). IR (neat) $3031,1701,1679 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 0.89-0.91(\mathrm{~d}, 3 \mathrm{H}, J=6.84 \mathrm{~Hz}), 0.98-1.00(\mathrm{~d}, 3 \mathrm{H}, J=6.83 \mathrm{~Hz}), 2.25-2.30$ $(\mathrm{m}, 1 \mathrm{H}), 2.45-2.55(\mathrm{~m}, 3 \mathrm{H}), 2.70-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.96-2.99(\mathrm{~d}, 1 \mathrm{H}, J=12.69 \mathrm{~Hz}), 3.43-3.48(\mathrm{dd}, 1 \mathrm{H}, J=$ $11.47,8.30 \mathrm{~Hz}), 4.10-4.15(\mathrm{~m}, 1 \mathrm{H}), 5.02-5.07(\mathrm{~m}, 1 \mathrm{H}), 5.09-5.13(\mathrm{~m}, 1 \mathrm{H}), 5.72-5.76(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.50$ $(\mathrm{m}, 2 \mathrm{H}), 7.55-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.85-7.90(\mathrm{~m}, 2 \mathrm{H})$; HREI-MS calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}_{2}$ MW 373.1170, found
$m / z 373.1172\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}_{2}: \mathrm{C}, 64.31 ; \mathrm{H}, 6.21 ; \mathrm{N}, 3.75$. Found: C, 64.13; H, 6.25; N, 3.71. HPLC analysis [TSK-gel Silica 60, hexane-AcOEt (15:1), $0.5 \mathrm{~mL} / \mathrm{min}, 305 \mathrm{~nm} ; t_{\mathrm{R}}($ minor $)=34.6$ \min , t_{R} (major) $\left.=49.2 \mathrm{~min}\right]$ gave the isomeric composition of the product: $>99 \%$ de.
(1S, 6R)-6-Benzoylcyclohex-3-enecarboxylic Acid (10a)
To a solution of $\mathrm{LiOH}(47 \mathrm{mg}, 2 \mathrm{mmol})$ in $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}(9: 1)(9 \mathrm{~mL})$ was added $9 \mathrm{a}(373 \mathrm{mg}, 1 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After being stirred at $0{ }^{\circ} \mathrm{C}$ for 4 h , the reaction was quenched $10 \% \mathrm{HCl}$ and then the mixture was extracted with $\mathrm{CHCl}_{3}(3 \square 20 \mathrm{~mL})$. The extract was washed with brine, dried over MgSO_{4}, and filtered. The filtrate was evaporated in vacuo and then the resulting residue was purified by column chromatography on silica gel with hexane-EtOAc (2:1) to afford chiral carboxylic acid (10a) ($162 \mathrm{mg}, 70 \%$) as a white solid. mp 122-123.5 ${ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right.$-hexane); [[]$_{\mathrm{D}}{ }^{24}-41.4^{\circ}$ (c 0.5, CHCl_{3}); [lit., ${ }^{11} \mathrm{mp} 106-108{ }^{\circ} \mathrm{C}$ $\left.\left(\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;[\alpha]_{\mathrm{D}}^{23}-31.9^{\circ}\left(\mathrm{c} 0.48, \mathrm{CHCl}_{3}\right)\right] ; \mathrm{IR}(\mathrm{KBr}) 1694,1680 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ प2.48-2.51 (m, 3H), 2.78-2.83(m, 1H), 3.02-3.04 (m, 1H), 3.96-3.97 (m, 1H), 5.64-5.65 (m, 1H), 5.755.76 (m, 1H), 7.43-7.48 (m, 2H), 7.53-7.55 (m, 1H), 7.85-7.88 (m, 2H); HREI-MS calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3}$, MW 230.0943, found $m / z 230.0930\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{3}$: C, 73.03; H, 6.13. Found: C, 72.90; $\mathrm{H}, 6.13$. The corresponding methyl ester (11a) was exploited for the ee determination of 10a: $>99 \%$ ee.

(1R, 6S)-6-Benzoylcyclohex-3-enecarboxylic Acid (10b)

The similar alkaline hydrolysis of $\mathbf{9 b}(373 \mathrm{mg}, 1 \mathrm{mmol})$ with $\mathrm{LiOH}(47 \mathrm{mg}, 2 \mathrm{mmol})$ utilizing the procedure described for 10a gave chiral carboxylic acid (10b) ($162 \mathrm{mg}, 70 \%$) as a white solid. mp 122$123.5^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right.$-hexane); $[\square]_{\mathrm{D}}{ }^{24}+41.2^{\circ}\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right)$. IR (KBr) see 10a; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ see 10a; HREI-MS calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{3}$ MW 230.0943, found $m / z 230.0930\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{3}: \mathrm{C}, 73.03 ; \mathrm{H}, 6.13$. Found: C, $72.91 ; \mathrm{H}, 6.18$. The corresponding methyl ester (11b) was exploited for the ee determination of $\mathbf{1 0 b}:>99 \%$ ee.

Methyl (1S, 6R)-6-Benzoylcyclohex-3-enecarboxylate (11a)

To a solution of $\mathbf{1 0 a}(230 \mathrm{mg}, 1 \mathrm{mmol})$ in MeOH -benzene (2:7) (4.5 mL) was added $\mathrm{TMSCHN}_{2}(2.0 \mathrm{M}$ in ether: $1 \mathrm{~mL}, 2 \mathrm{mmol}$) at rt . The mixture was stirred at rt for 30 min and then subjected to the usual work-up to obtain a crude product, which was purified by column chromatography on silica gel with hexane-EtOAc (2:1). The pure chiral methyl ester (11a) ($219 \mathrm{mg}, 90 \%$) was obtained as a white solid. mp 66-68 ${ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right.$-hexane); $[\square]_{\mathrm{D}}{ }^{24}-23.8^{\circ}$ (c $0.8, \mathrm{CHCl}_{3}$); IR (KBr) 1710, $1689 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 2.49-2.50(\mathrm{~m}, 3 \mathrm{H}), 2.68-2.81(\mathrm{~m}, 1 \mathrm{H}), 3.02-3.05(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.96-4.01(\mathrm{~m}, 1 \mathrm{H})$, 5.61-5.69 (m, 1H), 5.72-5.80 (m, 1H), 7.44-7.48 (m, 2H), 7.53-7.55 (m, 1H), 7.85-7.88 (m, 2H); HREIMS calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3}$, MW 244.1099, found $m / z 244.1097\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3}: \mathrm{C}, 73.75 ; \mathrm{H}$,
6.60. Found: C, 73.54; H, 6.68. HPLC analysis [Chiralcel OD-H, hexane $-i-\operatorname{PrOH}(97: 3), 0.5 \mathrm{~mL} / \mathrm{min}$, $254 \mathrm{~nm} ; t_{\mathrm{R}}($ minor $)=31.39 \mathrm{~min}, t_{\mathrm{R}}($ major $)=36.12 \mathrm{~min}$ gave the isomeric composition of the product: $>99 \%$ ee.

Methyl (1R, 6S)-6-Benzoylcyclohex-3-enecarboxylate (11b)

The similar methylation of $\mathbf{1 0 b}(230 \mathrm{mg}, 1 \mathrm{mmol})$ with $\mathrm{TMSCHN}_{2}(2.0 \mathrm{M}$ in ether: $1 \mathrm{~mL}, 2 \mathrm{mmol})$ utilizing the procedure described for 11a gave chiral methyl ester (11b) ($221 \mathrm{mg}, 91 \%$) as white solid. mp $66-68{ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right.$-hexane); $[\square]_{\mathrm{D}}{ }^{24}+25.1^{\circ}\left(\mathrm{c} 0.8, \mathrm{CHCl}_{3}\right)$. IR (KBr) see 11a; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ see 11a; HREI-MS calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}$ MW 244.1099, found $\mathrm{m} / \mathrm{z} 244.1089$ (M^{+}). HPLC analysis [Chiralcel OD-H, hexane $-i-\mathrm{PrOH}(97: 3), 0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; t_{\mathrm{R}}($ major $)=31.39 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=$ 36.12 min] gave the isomeric composition of the product: $>99 \%$ ee.

Methyl (1S, 6S)-6-Benzoylcyclohex-3-enecarboxylate (12a)

A mixture of $9 \mathbf{9}(373 \mathrm{mg}, 1 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(691 \mathrm{mg}, 5 \mathrm{mmol})$ in methanol $(9 \mathrm{~mL})$ was stirred at rt for 9 h . The reaction was quenched with $10 \% \mathrm{HCl}$, and the mixture was extracted with $\mathrm{CHCl}_{3}(3 \square 20 \mathrm{~mL})$. The extract was washed with brine, dried over MgSO_{4}, and filtered. The filtrate was evaporated in vacuo and then the residue was purified by column chromatography on silica gel with hexane-EtOAc (1:1) to afford chiral methyl ester (12a) ($200 \mathrm{mg}, 82 \%$) as a colorless oil. [$[\mathrm{C}]_{\mathrm{D}}{ }^{24}+91.4^{\circ}\left(\mathrm{c} 0.7, \mathrm{CHCl}_{3}\right)$. IR (neat) 1733, $1680 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 2.03-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.48$ (m, 1H), 2.50-2.57 (m, 1H), 3.12-3.14 (m, 1H), 3.60 (s, 3H), 3.85-3.87 (m, 1H), 5.74-5.75 (m, 2H), 7.45$7.49(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.99-8.01(\mathrm{~m}, 2 \mathrm{H})$; HREI-MS calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{3}$ MW 244.1099, found $m / z 244.1098\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3}: \mathrm{C}, 73.75$; H, 6.60. Found: C, 73.37; H, 6.61. HPLC analysis [Chiralcel OD-H, hexane-EtOH (100:1), $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; t_{\mathrm{R}}$ (major) $=18.80 \mathrm{~min}, t_{\mathrm{R}}$ $($ minor $)=19.69 \mathrm{~min}]$ gave the isomeric composition of the product: $>99 \%$ ee.

Methyl (1R, 6R)-6-Benzoylcyclohex-3-enecarboxylate (12b)

The similar methanolysis of $\mathbf{9 b}(373 \mathrm{mg}, 1 \mathrm{mmol})$ utilizing the procedure described for 12a gave chiral methyl ester (12b) ($202 \mathrm{mg}, 83 \%$) as a colorless oil. [$[\mathrm{C}]_{\mathrm{D}}{ }^{20}-94.1^{\circ}$ (c $2.35, \mathrm{CHCl}_{3}$). IR (neat) see 12a; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) see 12a; HREI-MS calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{MW} 244.1099$, found $\mathrm{m} / \mathrm{z} 244.1076\left(\mathrm{M}^{+}\right)$. HPLC analysis [Chiralcel OD-H, hexane-EtOH (100:1), $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; t_{\mathrm{R}}$ (minor) $=18.90 \mathrm{~min}, t_{\mathrm{R}}$ $($ major $)=19.62 \mathrm{~min}]$ gave the isomeric composition of the product: $>99 \%$ ee.

To a solution of $\mathbf{9 a}(373 \mathrm{mg}, 1 \mathrm{mmol})$ and N-methoxy- N-methylamine hydrochloride ($195 \mathrm{mg}, 2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ were added DMAP ($61 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(0.4 \mathrm{~mL}, 3 \mathrm{mmol})$ at rt . After being stirred at rt for 24 h , the reaction mixture was acidified with $10 \% \mathrm{HCl}$ and then extracted with CHCl_{3} ($3 \square 20 \mathrm{~mL}$). The extract was washed with brine, dried over MgSO_{4}, and filtered. The filtrate was evaporated in vacuo to give an oily residue, which was purified by column chromatography on silica gel with hexane-EtOAc (2:1) to afford chiral amide (13a) ($251 \mathrm{mg}, 92 \%$) as a colorless oil. [$[\square]_{D}{ }^{24}-67.9^{\circ}(\mathrm{c}$ $0.8, \mathrm{CHCl}_{3}$). IR (neat) $1681,1660 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 2.38-2.50(\mathrm{~m}, 3 \mathrm{H}), 2.65-2.72(\mathrm{~m}$, $1 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.38-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.85-3.89(\mathrm{~m}, 1 \mathrm{H}), 5.81-6.02(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.44(\mathrm{~m}$, 2H), 7.52-7.53 (m, 1H), 7.87-7.89 (m, 2H); HREI-MS calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3}$ MW 273.1365, found m / z $273.1342\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3}$: C, 70.31; H, 7.01; N, 5.12. Found: C, 70.73; H, 7.13, N, 5.08. HPLC analysis [Chiralcel OD, hexane-EtOH (5:1), $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; t_{\mathrm{R}}$ (major) $=7.28 \mathrm{~min}, t_{\mathrm{R}}$ $($ minor $)=8.45 \mathrm{~min}]$ gave the isomeric composition of the product: $99 \% \mathrm{ee}$.

($1 R, 6 S$)-6-Benzoyl- N-methoxy- N-methylcyclohex-3-enecarboxamide (13b)

The similar aminolysis of $\mathbf{9 b}$ ($373 \mathrm{mg}, 1 \mathrm{mmol}$) with N-methoxy- N-methylamine hydrochloride (195 mg , 2 mmol) based on the procedure described for 13a gave amide (13b) ($248 \mathrm{mg}, 91 \%$) as a colorless oil. $[\square]_{D}{ }^{24}+67.3^{\circ}\left(\mathrm{c} 1.3, \mathrm{CHCl}_{3}\right)$. IR (neat) see 13a; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) see 13a; HREI-MS calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3}$ MW 273.1365, found $m / z 273.1390\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3}: \mathrm{C}, 70.31 ; \mathrm{H}, 7.01$; N , 5.12. Found: C, 69.85; H, 7.04, N, 4.99. HPLC analysis [Chiralcel OD, hexane-EtOH (5:1), $1.0 \mathrm{~mL} / \mathrm{min}$, $254 \mathrm{~nm} ; t_{\mathrm{R}}($ minor $)=7.6 \mathrm{~min}, t_{\mathrm{R}}$ (major) $=9.0 \mathrm{~min}$] gave the isomeric composition of the product: 99% ee.

(1S, 6R)-6-Piperidinocarbonyl- N-methoxy- N -methylcyclohex-3-enecarboxamide (14a)

To a solution of $7 \mathbf{a}(356 \mathrm{mg}, 1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was added piperidine ($0.4 \mathrm{~mL}, 4 \mathrm{mmol}$) at rt . After being stirred at rt for 3 h , the reaction mixture was treated with $10 \% \mathrm{HCl}$ and extracted with CHCl_{3} ($3 \square 20 \mathrm{~mL}$). The extract was washed with brine, dried over MgSO_{4}, and filtered. The filtrate was evaporated in vacuo and the oily residue was purified by column chromatography on silica gel with hexane-EtOAc (3:97) to afford chiral piperidine amide (14a) ($261 \mathrm{mg}, 93 \%$) as a colorless oil. $[\square]_{D}{ }^{24}$ $+16^{\circ}\left(\mathrm{c} \mathrm{1.1}, \mathrm{CHCl}_{3}\right)$. IR (neat) $3498,1643 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 1.45-1.60(\mathrm{~m}, 6 \mathrm{H}), 2.15-$ $2.25(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.81-2.86(\mathrm{~m}, 1 \mathrm{H}), 3.05-3.08(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 3.30-3.40(\mathrm{~m}, 3 \mathrm{H})$, 3.45-3.55 (m, 1H), $3.73(\mathrm{~s}, 3 \mathrm{H}), 5.74-5.76(\mathrm{~m}, 1 \mathrm{H}), 5.79-5.83(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square$ 175.6, 171.9, 125.7, 124.0, 60.9, 46.6, 42.6, 37.4, 33.9, 32.1, 27.2, 26.5, 26.2, 25.4, 24.5; HREI-MS calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$ MW 280.1787, found $\mathrm{m} / \mathrm{z} 280.1786\left(\mathrm{M}^{+}\right)$. HPLC analysis [Chiralcel OD-H,
hexane $-i-\operatorname{PrOH}(5: 1), 0.5 \mathrm{~mL} / \mathrm{min}, 225 \mathrm{~nm} ; t_{\mathrm{R}}($ minor $)=15.30 \mathrm{~min}, t_{\mathrm{R}}($ major $\left.)=22.54 \mathrm{~min}\right]$ gave the isomeric composition of the product: $>99 \%$ ee.
($1 R, 6 S$)-6-Piperidinocarbonyl- N-methoxy- N-methylcyclohex-3-enecarboxamide (14b)
The similar aminolysis of $\mathbf{7 b}$ ($356 \mathrm{mg}, 1 \mathrm{mmol}$) based on the procedure described for $\mathbf{1 4 a}$ gave chiral piperidine amide (14b) ($255 \mathrm{mg}, 91 \%$) as a colorless oil. [[]$_{\mathrm{D}}{ }^{24}-13.6^{\circ}$ (c 1.1, CHCl_{3}). IR (neat) see 14a; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ see 14a; ${ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) see 14a; HREI-MS calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$ MW 280.1787, found $m / z 280.1804\left(\mathrm{M}^{+}\right)$. HPLC analysis [Chiralcel OD-H, hexane- i-PrOH ($5: 1$), $0.5 \mathrm{~mL} / \mathrm{min}, 225 \mathrm{~nm} ; t_{\mathrm{R}}$ (major) $=14.73 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=23.41 \mathrm{~min}$ gave the isomeric composition of the product: 91% ee.

(1S, 6R)-6-Morpholinocarbonyl- N-methoxy- N-methylcyclohex-3-enecarboxamide (15a)

To a solution of $7 \mathbf{a}(356 \mathrm{mg}, 1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was added morpholine $(0.35 \mathrm{~mL}, 4 \mathrm{mmol})$ at rt . After being stirred at rt for 5 h , the reaction mixture was subjected to the usual work-up to give a crude product, which was purified by column chromatography on silica gel with hexane-EtOAc (3:97) to afford chiral morpholine amide (15a) (257 mg, 91%) as a white solid. $\mathrm{mp} 86-87.5^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right.$-hexane); $[\square]_{\mathrm{D}}{ }^{24}+8.2^{\circ}\left(\mathrm{c} 1.08, \mathrm{CHCl}_{3}\right.$). IR (KBr) 3498, 1659, $1643 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 2.18-2.25$ $(\mathrm{m}, 1 \mathrm{H}), 2.33-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.71-2.78(\mathrm{~m}, 1 \mathrm{H}), 3.02-3.08(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 3.28-3.33(\mathrm{~m}, 1 \mathrm{H}), 3.42-$ $3.69(\mathrm{~m}, 8 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 5.74-5.76(\mathrm{~m}, 2 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 175.2,172.3,125.0,124.4$, 66.7, 66.6, 66.5, 61.0, 46.1, 41.9, 36.4, 32.1, 26.8, 26.3; HREI-MS calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$ MW 282.1580, found $m / z 282.1566\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 59.56; H, 7.85; N, 9.92. Found: C, 59.31; H, 7.82; N, 9.81. HPLC analysis [Chiralcel OD-H, hexane $-i-\mathrm{PrOH}(5: 1), 0.5 \mathrm{~mL} / \mathrm{min}, 225 \mathrm{~nm} ; t_{\mathrm{R}}($ minor $)=$ $28.49 \mathrm{~min}, t_{\mathrm{R}}($ major $\left.)=35.24 \mathrm{~min}\right]$ gave the isomeric composition of the product: $>99 \%$ ee .
(1R, 6S)-6-Morpholinocarbonyl- N-methoxy- N-methylcyclohex-3-enecarboxamide (15b)
The similar aminolysis of $\mathbf{7 b}$ ($356 \mathrm{mg}, 1 \mathrm{mmol}$) with morpholine ($0.35 \mathrm{~mL}, 4 \mathrm{mmol}$) based on the procedure described for $\mathbf{1 5 a}$ gave chiral morpholine amide ($\mathbf{1 5 b}$)($254 \mathrm{mg}, 90 \%$) as a colorless oil. [$[\mathrm{]}]_{\mathrm{D}}{ }^{24}$ -8.3° (c 1.1, CHCl_{3}). IR (neat) see 15a; ${ }^{1} \mathrm{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) see $\mathbf{1 5 a} ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}) see 15a; HREI-MS calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$ MW 282.1580, found $\mathrm{m} / \mathrm{z} 282.1589\left(\mathrm{M}^{+}\right)$. HPLC analysis [Chiralcel OD-H, hexane $-i-\mathrm{PrOH}(5: 1), 0.5 \mathrm{~mL} / \mathrm{min}, 225 \mathrm{~nm} ; t_{\mathrm{R}}$ (major) $=28.49 \mathrm{~min}, t_{\mathrm{R}}$ (minor) $=35.81 \mathrm{~min}$] gave the isomeric composition of the product: 92% ee .

To a solution of $\mathbf{9 a}(373 \mathrm{mg}, 1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was added piperidine $(0.4 \mathrm{~mL}, 4 \mathrm{mmol})$ at rt . After being stirred at rt for 3 h , the reaction mixture was subjected to the usual work-up to give a crude product, which was purified by column chromatography on silica gel with hexane-EtOAc (2:1) to afford chiral piperidine amide (16a) ($273 \mathrm{mg}, 92 \%$) as a colorless oil. $[\mathrm{C}]_{\mathrm{D}}{ }^{24}-67.9^{\circ}$ (c 1.17, CHCl_{3}). IR (neat) 3477, 1681, $1633 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 1.52-1.63(\mathrm{~m}, 6 \mathrm{H}), 2.35-2.48(\mathrm{~m}, 3 \mathrm{H}), 2.72-2.82$ $(\mathrm{m}, 1 \mathrm{H}), 3.22-3.26(\mathrm{~m}, 1 \mathrm{H}), 3.41-3.53(\mathrm{~m}, 4 \mathrm{H}), 3.82-3.86(\mathrm{~m}, 1 \mathrm{H}), 5.74-5.76(\mathrm{~m}, 1 \mathrm{H}), 5.82-5.86(\mathrm{~m}, 1 \mathrm{H})$, 7.41-7.45 (m, 2H), 7.46-7.52 (m, 1H), 7.89-7.92 (m, 2H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 201.8,172.1$, 137.6, 131.9, 128.2, 128.0, 125.6, 124.3, 46.9, 42.9, 39.8, 38.2, 27.0, 26.7, 26.6, 25.5, 24.6; HREI-MS calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{2}$ MW 297.1729, found $m / z 297.1721\left(\mathrm{M}^{+}\right)$. HPLC analysis [Chiralcel OD, hexane- $\mathrm{EtOH}(5: 1), 1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; t_{\mathrm{R}}($ major $)=6.56 \mathrm{~min}, t_{\mathrm{R}}($ minor $\left.)=8.91 \mathrm{~min}\right]$ gave the isomeric composition of the product: 99% ee.

(1R, 6S)-6-Benzoyl-1-piperidinocarbonylcyclohex-3-ene (16b)

The similar aminolysis of $\mathbf{9 b}$ ($373 \mathrm{mg}, 1 \mathrm{mmol}$) with piperidine ($0.4 \mathrm{~mL}, 4 \mathrm{mmol}$) based on the procedure described for 16a gave chira piperidine amide (16b) $(270 \mathrm{mg}, 91 \%)$ as a colorless oil. [$[\mathrm{C}]_{\mathrm{D}}{ }^{24}+69.2^{\circ}$ (c $1.22, \mathrm{CHCl}_{3}$). IR (neat) see 16a; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) see 16a; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) see 16a; HREI-MS calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{2}$ MW 297.1729, found $m / z 297.1720$ (M ${ }^{+}$). HPLC analysis [Chiralcel OD , hexane- $\operatorname{EtOH}(5: 1), 1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; t_{\mathrm{R}}($ minor $)=6.56 \mathrm{~min}, t_{\mathrm{R}}($ major $\left.)=8.91 \mathrm{~min}\right]$ gave the isomeric composition of the product: 99% ee.

(1S, 6R)-6-Benzoyl-1-morpholinocarbonylcyclohex-3-ene (17a)

To a solution of 9a ($373 \mathrm{mg}, 1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was added morpholine ($0.35 \mathrm{~mL}, 4 \mathrm{mmol}$) at rt. The mixture was stirred at rt for 6 h and then subjected to the usual work-up to give a crude product, which was purified by column chromatography on silica gel with hexane-EtOAc (2:1) to afford chiral morpholine amide (17a) ($321 \mathrm{mg}, 93 \%$) as a colorless oil. [[]$_{\mathrm{D}}{ }^{24}-60.4^{\circ}$ (c $2.2, \mathrm{CHCl}_{3}$). IR (neat) 3498, $1680,1632 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 2.42-2.71(\mathrm{~m}, 4 \mathrm{H}), 3.22-3.24(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.67(\mathrm{~m}, 8 \mathrm{H})$, 3.81-3.83 (m, 1H), 5.76-5.80 (m, 2H), 5.76-5.80 (m, 2H), 7.42-7.46 (m, 2H), 7.88-7.90 (m, 2H), ${ }^{13} \mathrm{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 201.6,172.5,137.1,132.2,128.3,128.0,127.9,124.8,124.7,66.8,66.7,66.6$, 66.5, 46.4, 42.0, 40.4, 36.8, 26.8; HREI-MS calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3}$ MW 299.1521, found $\mathrm{m} / \mathrm{z} 299.1521$ $\left(\mathrm{M}^{+}\right)$. HPLC analysis [Chiralcel OD, hexane-EtOH (5:1), $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; t_{\mathrm{R}}$ (major) $=12.60 \mathrm{~min}$, $t_{\mathrm{R}}($ minor $\left.)=15.26 \mathrm{~min}\right]$ gave the isomeric composition of the product: 99% ee.

The similar aminolysis of $\mathbf{9 b}$ ($373 \mathrm{mg}, 1 \mathrm{mmol}$) with morpholine ($0.35 \mathrm{~mL}, 4 \mathrm{mmol}$) based on the procedure described for 17a gave chira morpholine amide (17b) ($281 \mathrm{mg}, 94 \%$) as a colorless oil. $[\square]_{\mathrm{D}}{ }^{24}$ $+59.7^{\circ}$ (c 1.9, CHCl_{3}). IR (neat) see 17a; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) see $\mathbf{1 7 a} ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}) see 17a; HREI-MS calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3}$ MW 299.1521, found $\mathrm{m} / \mathrm{z} 299.1509\left(\mathrm{M}^{+}\right)$. HPLC analysis [Chiralcel OD, hexane-EtOH (5:1), $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; t_{\mathrm{R}}($ minor $)=12.60 \mathrm{~min}, t_{\mathrm{R}}($ major $)=15.26$ min] gave the isomeric composition of the product: 99% ee.

Crystal Data for X-Ray Crystallographic Analysis of Compounds (7a, 9a, and 9b)

7a: $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$, MW $=356.50$, yellow block, monoclinic, space group $\mathrm{P} 2_{1}(\# 4), \mathrm{a}=8.738(3) \AA$ A, $\mathrm{b}=$ $11.399(5) \AA, \mathrm{c}=10.074(4) \AA, \mathrm{V}=899.2(6) \AA^{3}, \square=116.35(1)^{\circ}, \mathrm{Z}=2, \mathrm{R}=0.026$, $\mathrm{Rw}=0.068$; 9a: $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}_{2}$, $\mathrm{MW}=373.53$, yellow block, orthorhombic, $\mathrm{P}_{1} 2_{1} 2_{1}(\# 19)$, $\mathrm{a}=9.842(3) \AA, \mathrm{b}=10.807(3) \AA$, c $=17.396(3) \AA, \mathrm{V}=1850.4(8) \AA^{3}, \mathrm{Z}=4, \mathrm{R}=0.031, \mathrm{Rw}=0.067$; 9b: $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}_{2}, \mathrm{MW}=373.53$, pale yellow block, monoclinic, $\mathrm{P} 2_{1}(\# 4), \mathrm{a}=9.009(3) \AA, \mathrm{b}=10.882(4) \AA, \mathrm{c}=9.532(4) \AA, \mathrm{V}=932.3(6) \AA^{3}, \square=$ $94.00(2)^{\circ}, \mathrm{Z}=2, \mathrm{R}=0.025, \mathrm{Rw}=0.071$. Structure factors are available from author (e-mail : ynagao@ph.tokushima-u.ac.jp) upon request.

ACKNOWLEDGEMENTS

This work was supported by a Grant-in-Aid from the Tokyo Biochemical Research Foundation (TBRF).

REFERENCES AND NOTES

1. Y. Nagao and E. Fujita, Yuki Gosei Kagaku Kyokai Shi, 1984, 42, 622; E. Fujita and Y. Nagao, "Advances in Heterocyclic Chemistry Vol. 45 ", ed. by A. R. Katritzky, Academic Press, New York, 1989; R. S. Ward, Chem. Soc. Rev., 1990, 19, 1; M. C. Willis, J. Chem. Soc., Perkin Trans. 1, 1999, 1765. A. C. Spivey and B. I. Andrews, Angew. Chem., Int. Ed., 2001, 40, 3131; Y. Nagao, Yakugaku Zasshi, 2002, 122, 1 and references cited therein.
2. Y. Nagao, T. Ikeda, T. Inoue, M. Yagi, M. Shiro, and E. Fujita, J. Am. Chem. Soc., 1982, 104, 2079.
3. Y. Nagao, T. Ikeda, T. Inoue, M. Yagi, M. Shiro, and E. Fujita, J. Org. Chem., 1985, 50, 4072.
4. Y. Nagao, T. Inoue, E. Fujita, S. Terada, and M. Shiro, Tetrahedron, 1984, 40, 1215.
5. Y. Nagao, T. Kumagai, S. Tamai, T. Abe, Y. Kuramoto, T. Taga, S. Aoyagi, Y. Nagase, M. Ochiai, Y. Inoue, and E. Fujita, J. Am. Chem. Soc., 1986, 108, 4673.
6. Y. Nagao, Y. Hagiwara, T. Kumagai, M. Ochiai, T. Inoue, K. Hashimoto, and E. Fujita, J. Org. Chem., 1986, 51, 2391.
7. Y. Nagao, Y. Hagiwara, H. Hasegawa, M. Ochiai, T. Inoue, M. Shiro, and E. Fujita, Chem. Lett.,

1988, 381.
8. N. Tamura, H. Natsugari, Y. Kawano, Y. Matsushita, K. Yoshioka, and M. Ochiai, Chem. Pharm. Bull., 1987, 35, 996.
9. H.-J. Gais and K. L. Lukas, Angew. Chem., Int. Ed. Engl., 1984, 23, 142.
10. S. Nahm and S. M. Weinreb, Tetrahedron Lett., 1981, 22, 3815; M. P. Sibi, Org. Prep. Proced. Int., 1993, 25, 15; M. Mentzel and H. M. R. Hoffmann, J. Prakt. Chem., 1997, 339, 517; J. Singh, N. Satyamurthi, and I. S. Aidhen, J. Prakt. Chem., 2000, 342, 340.
11. E. A. Bercot and T. Rovis, J. Am. Chem. Soc., 2004, 126, 10248.
12. E. Jucker and R. Süess, Helv. Chim. Acta, 1959, 42, 2506.
13. Y. Nagao, M. Yagi, T. Ikeda, and E. Fujita, Tetrahedron Lett., 1982, 23, 201; Y. Nagao, Y. Nagase, T. Kumagai, H. Matsunaga, T. Abe, O. Shimada, T. Hayashi, and Y. Inoue, J. Org. Chem., 1992, 57, 4243; A. Gondalez, J. Aiguade, F. Urpi, and J. Vilarrasa, Tetrahedron Lett., 1996, 37, 8949; M. T. Crimmins and K. Chaudhary, Org. Lett., 2000, 2, 775; D. Zuev and L. A. Paquette, Org. Lett., 2000, 2, 679.
14. M. Van der Mey, A. Hatzelmann, G. P. M. Van Klink, I. J. Van der Laan, G. J. Sterk, U. Thibaut, W. R. Ulrich, and H. Timmerman, J. Med. Chem., 2001, 44, 2523; M. Van der Mey, H. Boss, A. Hatzelmann, I. J. Van der Laan, G. J. Sterk, and H. Timmerman, J. Med. Chem., 2002, 45, 2520; M. Van der Mey, H. Boss, D. Couwenberg, A. Hatzelmann, G. J. Sterk, K. Goubitz, H. Schenk, and H. Timmerman, J. Med. Chem., 2002, 45, 2526.
15. S. Miyano, N. Abe, F. Fujisaki, and K. Sumoto, Heterocycles, 1987, 26, 1813; N. Pourahmady and E. J. Eisenbraun, J. Org. Chem., 1983, 48, 3067.
16. J. H. Musser, P. F. Vonvoightlander, and J. Szmuszkovicz, Heterocycles, 1986, 24, 155.
17. L. F. Fieser and F. Novello, J. Am. Chem. Soc., 1942, 64, 802; K. Sugita and S. Tamura, Bull. Chem. Soc. Jpn., 1971, 44, 2866.

[^0]: ${ }^{\dagger}$ Dedicated to Dr. Pierre Potier, Emeritus Director of C.N.R.S., in celebration of his $70^{\text {th }}$ birthday.

